#### Approach to Reliable Operation

George Dodson,

Deputy Director Research Accelerator Division

February 2, 2010





#### **SNS Availability** 85% looks achievable but for >90% a plan is needed



for the U.S. Department of Energy

2



# **Approach to Reliable Operation**

#### 1. Create a Plan for 95% Availability

- Set downtime goals for 90% and 95% Availability
  - Downtime apportioned by group, system as appropriate
- Evaluation of the major sources of downtime
  - Use performance data to determine largest downtime contributors by Group, System, Sub-System, Sub-Sub-System....
  - Determine root causes of equipment failure
  - Determine actual Failure Rate (MTBF) and Mean Time to Repair/Recover Time (MTTRR) and compare with RAMI Model
  - Formulate downtime reduction strategy
    - Tailored approach: address the biggest downtime contributors first and "low hanging fruit" along the way
    - Incorporate in 95% Availability Plan
    - > Can we repair failed systems faster?

Predictive maintenance and proactive equipment replacement

- Complete an Operations Vulnerability Analysis



# Approach to Reliable Operation (cont'd)

- 2. Develop spares plan
  - Determine appropriate number of spares based on
    - Number of installed units, MTBF, Mean time to acquire new or repair broken,
    - Acquire spares so that we are not limited by spare parts availability
- **3.** Configuration Control
  - Ensure that new designs and design changes are handled properly
  - Ensure systems documentation as-built's are captured and updated
  - Ensure assets are tracked and managed in Datastream



# **95% Availability Plan**

- Develop a plan for each system
- System Plans will be combined into an overall availability plan
- We will formulate a plan using 95% as a "design point" to assess scope, cost and schedule for required improvements
- Continue to emphasize that 95% availability is a longterm target for SNS availability, not a promise



#### **Downtime Goals by System for 90% and 95% Availability**





#### 5000 hours- 95% SNS Availability

#### 5000 hours - 90% SNS Availability

|                                    | FY08     |                   |       |              |                   |       |              |
|------------------------------------|----------|-------------------|-------|--------------|-------------------|-------|--------------|
| System                             | Downtime | Downtime Fraction | Hours | Availability | Downtime Fraction | Hours | Availability |
| E-HVCM                             | 421.2    | 18%               | 45    | 99.10%       | 18%               | 90    | 98.20%       |
| RF                                 | 227.7    | 15%               | 38    | 99.24%       | 15%               | 76    | 98.48%       |
| E-MagPS                            | 162.2    | 6%                | 15    | 99.70%       | 6%                | 30    | 99.40%       |
| Target                             | 158.9    | 9%                | 23    | 99.54%       | 9%                | 46    | 99.08%       |
| Ion Source                         | 142.2    | 9%                | 23    | 99.54%       | 9%                | 46    | 99.08%       |
| Vacuum                             | 124      | 6%                | 14    | 99.72%       | 6%                | 28    | 99.44%       |
| E-chopper                          | 50.3     | 4%                | 11    | 99.78%       | 4%                | 22    | 99.56%       |
| E-other                            | 45.6     | 3%                | 7     | 99.86%       | 3%                | 14    | 99.72%       |
| Controls                           | 40.7     | 4%                | 11    | 99.78%       | 4%                | 22    | 99.56%       |
| Cooling                            | 33.7     | 6%                | 14    | 99.72%       | 6%                | 28    | 99.44%       |
| AP                                 | 27.3     | 3%                | 7     | 99.86%       | 3%                | 14    | 99.72%       |
| MPS                                | 17.3     | 3%                | 8     | 99.84%       | 3%                | 16    | 99.68%       |
| Ops                                | 13.4     | 3%                | 7     | 99.86%       | 3%                | 14    | 99.72%       |
| Prot. Sys.                         | 9.4      | 2%                | 5     | 99.90%       | 2%                | 10    | 99.80%       |
| BI                                 | 8.4      | 2%                | 5     | 99.90%       | 2%                | 10    | 99.80%       |
| Cryo                               | 4.7      | 5%                | 12    | 99.76%       | 5%                | 24    | 99.52%       |
| Facilities                         | 3.1      | 1%                | 2     | 99.96%       | 1%                | 4     | 99.92%       |
| Neut. Inst.                        | 2        | 1%                | 2     | 99.96%       | 1%                | 4     | 99.92%       |
| Misc.                              | 2        | 0%                | 1     | 99.98%       | 0%                | 2     | 99.96%       |
| <b>Total</b><br>7 Managed by UT-Ba | attelle  | 100%              | 250   | 95.00%       | 100%              | 500   | 90.00%       |

for the U.S. Department of Energy



| FY10                          | ) Downtime                                                     | e Goals                     |                                        | System           | Downtime<br>Hours |
|-------------------------------|----------------------------------------------------------------|-----------------------------|----------------------------------------|------------------|-------------------|
|                               |                                                                |                             |                                        | E-HVCM           | 250               |
|                               | FY08 Downtime                                                  | FY09 Downtime               | 5600 hours - 85% SNS Availability      | RF               | 154               |
| 450                           |                                                                |                             |                                        | E-MagPS          | 45                |
| 450                           |                                                                |                             |                                        | Target           | 40                |
|                               |                                                                |                             |                                        | Ion Source       | 70                |
| 400 —                         |                                                                |                             |                                        | Vacuum           | 30                |
|                               |                                                                |                             |                                        | E-chopper        | 40                |
| 350 —                         |                                                                |                             |                                        | E-other          | 20                |
|                               |                                                                |                             |                                        | Controls         | 40                |
| 300 -                         |                                                                |                             |                                        | Cooling          | 25                |
|                               |                                                                |                             |                                        | АР               | 14                |
| 250                           |                                                                |                             |                                        | MPS              | 16                |
| 230                           |                                                                |                             |                                        | Ops              | 7                 |
|                               |                                                                |                             |                                        | Prot. Sys.       | 20                |
| 200 -                         |                                                                |                             |                                        | BI               | 15                |
|                               |                                                                |                             |                                        | Cryo             | 30                |
| 150 —                         |                                                                |                             |                                        | Facilities       | 8                 |
|                               |                                                                |                             |                                        | Neut. Inst.      | 8                 |
| 100 -                         |                                                                |                             |                                        | Misc.            | 8                 |
|                               |                                                                |                             |                                        | Total            | 840               |
| 50<br>0<br>E:H <sup>NCM</sup> | R <sup>f</sup><br>E-Mag <sup>PS</sup> Target Jon Source Vacuum | per Fother Controls Cooline | AP MPS OPS SYS. BI CNO<br>Prot. BI CNO | ties Inst. Misc. | - OAK<br>RIDGE    |

#### Management Information Systems for Downtime Reporting and Equipment Tracking (identify largest sources of downtime)

- Downtime is assigned using the Shift Closeout page in the Operations Administration System (OAS), an ORACLE application.
- Downtime is reported by Group, Sub-Group, Sub-Sub Group....
  - The structure is as deep as it makes sense to use in tracking.
  - The OAS reporting structure is being created as a duplicate to the Equipment Structure in the Equipment Tracking/Maintenance Management System Datastream 7i (Infor)
  - The two systems will eventually be linked for direct tracking of downtime by position and asset



#### **Evaluations of Beam Downtime > 12 Hrs**

- For beamtime loss > 12 Hours we hold an Evaluation done in accordance with SNS OPM 6.B-1"SNS Neutron Beam Production Downtime Evaluation Process". This
- The Evaluation includes:
  - A description and timeline of the associated events including System Response.
  - A summary of the root-cause of the failure.
  - An evaluation of the risk/likelihood that similar events may occur in the future.
  - A summary of suggested improvements that can mitigate this risk.
- The Evaluations are on the RAD SharePoint Site



# **Determine the Root Cause of the Failure (Example)**

- In the HVCMs the IGBT Switchplate capacitors failed at ~20% of their expected lifetime
- Fit failure data to Weibull distribution to determine where in the distribution they are failing (infant, random, wear-out)
- The capacitors were overheating
- Tried several different types of replacements
- Settled on the TPC solid capacitors
  - Run much cooler
  - Successfully tested for 9 months of operation
- Compare with RAMI Expectations
  - Model prediction is MTBF of 27,000 Hrs for HVCMs MTBF
  - Create plan for 10,000 Hrs with current design
  - Improve design to achieve 27,000 Hrs



# **Goals for Electrical Systems (Example)**

Downtime budget for 90% and 95% availability of Electrical Systems for 5000 operating hours are as follows:

#### For 90% availability:

| Modulators            | 90 hours  |
|-----------------------|-----------|
| <b>Power Supplies</b> | 30 hours  |
| Choppers              | 22 hours  |
| Other                 | 14 hours  |
| Total                 | 156 hours |
| 95% availability:     |           |
| Modulators            | 45 hours  |
| Power Supplies        | 15 hours  |
| Choppers              | 11 hours  |
| Other                 | 7 hours   |

Total

S / hours 78 hours

For



# **Experience Based Plan (Example)**

#### **High Voltage Converter Modulators**

- MTTR for failures outside of the tank averages 3 hours
- MTTR for failures inside the tank averages 12 hours
- Inside to outside tank failures occur at a ratio of about 10:1.
- For 90% availability, the budget is 90 hours or 2 inside tank and 22 outside tank for 24 total failures. This is a system MTBF of 208 hours. For each of the15 systems it means and average MTBF of 3125 hours.
- For 95% availability, the budget is 45 hours or 1 inside tank and 11 outside tank for 12 total failures. This is a system MTBF of 416 hours. For each of 15 systems a MTBF of 6250 hours. A MBTF of 6000 hours was reached (albeit at very low duty cycles) before the onset of capacitor problems, so in principal, this goal is also within reach.



# **Experience Based Plan (continued)**

The short term goal is to reach 10,000 hours MTBF for the Modulators. These improvements include:

| Capacitors (TPC)  | \$1M   | AIP(14)                           | 4KV Bypass Caps, cables etc. |  |
|-------------------|--------|-----------------------------------|------------------------------|--|
| SLAC Gate Drivers | \$1.8M | AIP(02)                           |                              |  |
| IGBTs             | \$3M   | \$1M components and \$2M NFDD R&D |                              |  |
| System Controller |        | PAIP(04)                          |                              |  |

Dual, redundant oil pumps and external heat exchangers \$300K

Longer term improvements for even longer MTBF include:

Series HV Disconnect Switch

Redundant H Bridge

Long term improvement for short MTTRR

Hot-Swappable Spare HVCM

## **Can we Repair Failed Systems Faster?**

- Accelerator Operations personnel reset but do not replace failed systems.
  - We do not currently have onsite 24/7 technical support
- Phone-in to repair personnel arrival is on the order of ~1 hour. Technician/Engineer phone-in is accompanied by Research Mechanic phone-in.
- Can we reduce this number? If so, at what cost?
- For the HVCMs:
  - Assuming a the previous numbers for repair times on 24 failures per year for 90% availability and 12 failures per year for 95% availability.
  - If we went to 24/7 coverage (one technician and one research mechanic(electrical) 8 total positions @ ~ \$1.6 M/year), this would cut about one hour from each off-hour repair. About 76% of repairs are off-hour.
  - This would save 18 hours of downtime in the 90% model and 9 hours of downtime in the 95% model.
- The technician and research mechanic would also be available to repair other systems.



# **Predictive Maintenance and Proactive Replacement**

- Predict the onset of failure and replace unit during planned maintenance periods
  - Measure klystron perveance
  - Measure vibration spectra from rotating equipment
- Replace equipment at a predetermined point in prefailure
- Some equipment fails without warning
  - Once accurate MTBF has been determined, agree to replace at a fixed percent of the equipment lifetime
- Some equipment has a reasonable service life considerably shorter than the MTBF.
  - PLCs have a MTBF of 100 Year



# Track the failure rate of equipment and compare with a Weibull Model



17 Managed by UT-Battelle for the U.S. Department of Energy



# **Spares Plan**

- Determine appropriate number of spares based on
  - Number of installed units
  - MTBF
  - Mean time to acquire new or repair broken (can create a "blended average")
  - Inventory Status
    - » All installed at the same time
      - Use predicted lifetime and purchase spares for complete change at end of life and wait for service start times to randomize (adjust lifetime with failure data)
    - » Randomized start of service times
      - Use SparesCalculator to predict Mean Time to Stock Outage and establish a "reasonable" goal.

#### Acquire spares so that we are not limited by spare parts availability



# **Configuration Control**

- Configuration Control Policy and Procedures
  - Section 9.A. Design Control and Configuration Management
    - 9.A-1 NFDD/RAD Configuration Management Policy
- To document previous history (when available) and present configuration including the status of compliance of an item to its physical and functional requirements.
- To ensure that we have correct, accurate, and current documentation.
- To ensure that new designs for systems, structures, components and software utilize best engineering practice, follow from an approved set of specifications, and are appropriately documented.
- To ensure that changes to existing systems, structures, components and software utilize best engineering practice, follow from an approved design change, and are appropriately documented.
- To ensure that the deployment of a new system or a change to an existing system is authorized.
- To ensure that the impact on performance due to the deployment of a new system or a change to a system is fully understood, and that the risks associated with the deployment are considered.



# **Configuration Control (cont'd)**

- Configuration Control Policy and Procedures (cont'd)
  - Section 9.A. Design Control and Configuration Management
    - 9.A-2 NFDD/RAD Design Development Procedure
    - 9.A-3 NFDD/RAD Design Change Procedure
      - Detailed procedure including conceptualization, design, review, fabrication, testing, pre-installation review, installation, commissioning, documentation, maintenance requirements and tracking



#### **N+1 Redundancy**

- In the past, the path to high system availability was large MTBF for each component
- Most current thinking centers around N+1 redundant systems (continue operation and fix on a Maintenance Day – effectively takes the MTTR to 0)
  - Water Pumps this has been done for years 4 to make 3
  - Power Supplies: 2 to make 1, 3 to make 2
  - HV Switches: for switches that fail shorted, 2 in series
- Apply where the cost is not too high and the systems are more failure prone.



### Conclusion

We have an approach to achieving high availability. It involves:

- Developing a plan for high Availability Hardware and Fault Tolerant Software. We have some elements of this now.
- Development of a Predictive Maintenance plan to compliment our existing Preventative Maintenance Plan
- Development and execution of a Spares Plan
- An existing Configuration Control Policy and Procedures

